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By means of a variational method, the heat-balance equation is de-
rived for a disk-thermocouple system in a cylindrical tube for various
radii of the disk, tube, and thermocouple wires, and for various values
of the thermal conductivity of the medium and thermocouple material.

The heat released in various physical and chemical
processes is often registered by means of thermocou-
ple probes introduced into a homogeneous medium.
The experimentally measured guantity then is the tem-
perature of the sample and, generally, the quantity at
the base of the determination is the evolved heat. This
situation, in particular, arises in connection with het-
erogeneous catalysis, when a specimen of the investi-
gated material with a thermocouple attached is placed
in a gaseous medium and the heating of the specimen,
is recorded to permit a calculation of the rate of the
corresponding chemical reaction. If steps are not
taken to ensure that the geometry of the reaction vol-
ume and the specimen itself are suitable, the problem
of finding the relation between the thermocouple tem-
perature T and the amount of heat Q entering the speci-
men is practically insoluble. In such cases, and quite
often in cases of simple geometry, many authors, for
example, [1,2], implicitly assuming a linear depen-
dence of T on Q, measure geveral different values of
Tj and replace ratios of the type Qi/Qj with ratios
Ti/ Tj. :

We have explicitly determined the Q(T) relation for
the common type of experiment in which a specimen in
the form of a disk with a thermocouple attached is
placed coaxially in a cylindrical tube filled with gas.

It is found that a linear relation between Q and T is
frequently not realized, even at not very high tempera-~
tures. In a number of cases, the very fact of finding
the function Q(T) makes it possible to determine the
rate constants of exothermic chemical reactions by
quite simple means. Moreover, it is possible to obtain
values of the absolute reaction rate without additional
measurements, which is not possible with methods in
which it is necessary to resort to an analysis of the
experimental data using temperature ratios.

We start by listing the assumptions on which the
solution of the problem is based.

1. The tube is infinitely long. The case of an infinite
space corresponds to a tube of infinite radius.

2. The specimen is a disk of zero thickness, while
the thermocouple is a homogeneous infinite circular
cylinder arranged along the axis of the tube to the right
of and abutting the specimen.

3. The temperatures of the tube walls, its infinitely
remote ends, and the infinitely remote right end of the
thermocouple are the same, a condition which is
achieved by forced cooling.

4. The temperature is the same over the entire sur-
face of the specimen and equal to that of the left end
(junction) of the thermocouple attached to the specimen.

5. Terms on the order of ry/p are everywhere ne~
glected, except when multiplied by a factor on the or-
der of A/A, which may be very large.

6. The radiational flow of heat into and away from
the thermocouple cylinder is disregarded. To a consid-
erable extent, this assumption is justified by the
rapid decrease in thermocouple temperature with dis-
tance from the specimen and by the offsetting nature of
the radiation at temperatures that are not too high, on
the one hand, and the flow of heat along the thermo-
couple, on the other.

7. Convective heat transfer is neglected. However,
free convection can be taken into account by means of
the "apparent equivalent thermal conductivity™ Ag [3, 4],
but at R ~ 1 and the pressures characteristic of rare-
fied gases, the values of the Pr and Gr numbers are
such that all methods of taking the convection into ac-
count give Ag = A,

Point 4 presupposes that the thermal conductivity
of the specimen material is infinite, We undertake to
show that the assumption is well satisfied over a quite
broad range of realistic experimental conditions. For
this, we approximately solve the problem of the tem~
perature distribution in a disk of finite thickness
{d/o < 1) in an infinite medium without account for
radiation. For simplicity, we assume that the speci-
men is heated by the generation of heat in its middle
section,

x OL(x, 1)

—A
dx

= =4 Q/mp?

0<r<p

and that the temperature of the specimen is described
by the function

where Ty, 8, and ¢ are the variational parameters.
The temperature field in the medium is determined
by the known method [5] of solving double-integral
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equations with Bessel functions and the corresponding
approximate boundary conditions:
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0<r<p,
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As a result of simple calculations, we arrive at
the following relations:
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It is clear from (1) that, for most practical cases, the
quantities 6 and e are small, i.e., Ty(x,r) ~ const,
The radiation, here neglected, equalizes the tempera-
ture of the specimen even further; obviously, placing
the specimen in the tube at first reduces @, and only at
7 close to unity does it make 6 negative. In view of all
this, we may, with a sufficient degree of accuracy,
agsume that assumption 4 is valid.

The boundary conditions of the problem take the
form

t(0, r)="T,, 0\<r<p? }
fr, ) =0, —co<x<oo @
ot(+0, 1) _ 91(—0, ’) p<<r<R, (3)
Ax ox
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or or

The heat balance equation is also satisfied:
P
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The exact solution of the mixed boundary value
problem ig difficult to obtain. Therefore, we employ
a variational method. It is required to find the mini-
mum of the energy functional for trial functions that
must satisfy the principal boundary conditions (2).
(Conditions (3) and (4) are natural conditions.) More-
over, we select the trial functions in the class of har-
monic functions. This makes it possible, as a result
of certain transformations, to write the energy func-
tional in the form

R
®=2 Yt(O,r) (=0 1)
. Ox

R
— A S t(o, r) w rdr
ox

~e
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We now formulate the auxiliary boundary value
problem with conditions (2), (4), and

t(()! r):f(r), P\éf\%/R: (7)

provisionally assuming that f(r) is a known bounded
differentiable function satisfying the relations

fe) =T, [(R)=0.

Of course, the class of functions f(r) includes the true
function t(0,r) (at p = r < R) corresponding to the ex-
act solution of the basic problem (2)—(4). Specifying
f(r) in explicit form by means of a certain number of
parameters and taking the solutions of the auxiliary
problem as the trial functions which enter into the
energy functional, we can express the functional in
terms of the parameters determining f(r) and find its

extremum.

If we assume that (6) contains the exact function
t(x, r) and recall our previous assumptions, from a
comparison of (8) and (5) we obtain

QT = i—“ O + 2nptas [(Ty+ ' — 4] . (8)
0

Our method is directed toward the approximate calcu-
lation of the functional &, which is the only unknown in
Eg. (8).

The auxiliary problem is the Dirichlet problem, and,
with allowance for assumption 5, its solution t(x, r) can
be obhtained without special difficulty. We now substi-
tute the function t(x, r) obtained in functional (8) and
after very tedious transformations arrive at the final
expression:
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Passing to the limit in (9) as R — «, we write the func-
tional for the unbounded region in the following form:
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Let us dwell briefly on the calculation technique
for functionals (9) and (10).

1. R < «, We introduce the dimensionless variables
r/R=y, p/R =1, df/dr = (T¢/R)e(y). We simulate
the function ¢(y) with the polynomial

P (9) = ay + by® + ¢y, (11)

the relation between a, b, and ¢ being expressed as

a 2 b 4 ¢ 6y
It can be shown that when the quantity o = AAZ/2) (w <
< 0,01) is sufficiently small, as a result of which the
effect of the thermocouple is insignificant, this quan-
tity is the unique characteristic of the thermocouple.
However, even when this condition is not well satisfied,
the sensitivity of the thermocouple can be approxi-
mately expressed in terms of w, Although an actual
thermocouple is not a homogeneous cylindrical rod, this
means it is still possible to replace it with the latter
and introduce an effective value €. In particular, when
the thermocouple consists of two wires with relative
radii r{/p = A, and ry/p = A, and thermal conductivities
A; and A,, we proceeded as follows: & = (A1} + A,48)/
/2n, A= (A + A%)VZ. Thanks to the rapid decrease of
the inner integrals in (9), it is sufficient in integrating
from zero to infinity to confine the upper limit to k= 3
and resort to numerical integration at fixed values of
w and ry.

These calculations showed that the contribution of
the thermocouple is usually quite small; therefore, in
the case of an infinite space, when the relative influ-
ence of the thermocouple should be even slighter, we
introduced w directly and discarded from (10) the other
terms responsible for heat losses along the thermo-
couple leads.

2. R =, In this case, it is also convenient to turn
to the dimensionless variables y = r/p, df/dr = (Ty/
/p)X(y). The function x(y) is conveniently parametrized
as follows:

x() =aly Vi—1+by?+cy?, (13)

where

L |

9 ’ (14)

This choice of X(y) should give especially good results
when the influence of the thermocouple is not very

a—-g——i—b+

great, since at ry = 0 the form (13), (14) contains the
exact function, when b = ¢ = 0 and in accordance with
(14) a = —2/7. In this case, the problem can be solved
exactly (see, for example, [3]). Clearly, in the gen-
eral case, (13), (14) also gives a successful approxi-
mation, indirectly evidenced by the following fact:
even at a = 0 the minimum of the functional (10) at
r, = 0 differs from the true value by only 5%.

By means of a serieg of artificial techniques, all
the integrals in (10) can be exactly evaluated and the
functional written in the form
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Here, the conditional (14) extremum of & is determined
as a result of the usual procedure.

We were induced to solve the present problem by
specific experiments on the heterogeneous recombina-
tion of gas atoms, for which 1 never exceeds 0.8—0.9.
We made numerical calculations for precisely these
values and for an infinite space (n = 0). In this case,
it is convenient to rewrite Eq. (8) in the form

A
Q= 2rgtas (T 10— 4] + 8¢ . - 8) 4Tapgrg)

The results are presented in the table. At n= 0 and
r,= 0, the value g= 1 is consistent with the third of
Egs. (1). From general considerations, it is clear
that at 7 = 1, g= «, Infact, the second term in (16)
represents the heat transferred from the specimen to
the walls of the tube. If 1 = 1, we obtain thermal con-
tact between the specimen and the tube, and because
the temperatures are equal at all points of the disk,
Ty = 0 at any finite Q. From the form of the series
representing the functional &, we may conclude that
g(n) diverges logarithmically as n — 1.

The Coefficients g(n, A/A, A)

=0 n==0.8

n=0.9

Ak A A

A Remark

0 0.0t 0.03 0

0.0 | 0.03

o | oot | 003

8.0-10°11)1.04]1.12)1.95]2.43

L1310 [ 1)1 1.0511.951 2.0

9.6.102 1)1 1.04 | 1.95

1.36.102| 1 | ¢ 1.01 | 1.95

2.68

2.23

2.0

Copper-constantan
thermocouple in ni-
trogen, axygen, air

2.99 3.31

2.99 Copper-constantan
thermocouple in hy-
drogen

2.99 Chromet-alumel
thermocouple in ni-
trogen, oxygen, air

2.99 Chromel-alumel

thermocouple in hy-
drogen
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We note that in an unbounded region the heat balance
equation for a sphere with a surface equal to that of our
disk also has the form (16) with g = 1,111,

As may be seen from the table, a reduction in tube
radius leads at first to a slow and then to an ever more
rapid increase in heat transfer, but even at R = 1.1p,

g increases in comparison with the unbounded region
only by a factor of 3. With further decrease in R, g —
— o« logarithmically. Generally speaking, the effect
of the heat losses along the thermocouple leads is
small, and they diminish as the thermal conductivity
of the medium increases. However, in the case A~

=~ 0.03, a thermocouple of the copper-constantan type
in a medium with the thermal conductivity of air is
responsible for about one-third of all the conductive
heat transfer,

The results obtained can be applied to many physi-
cal and chemical processes taking place in cylindrical
tubes or in a sufficiently large volume of any shape.
Our method, based on the solution of the auxiliary
boundary value problem, can also be used to solve
problems in which the heat-transfer surfaces have a
different geometry.

We now consider the validity of the linear approxi-
mation, the assumption invariably introduced into all
studies of recombination and other chemical reactions
that Q and T, are proportional. It follows from (16)
that the linear law is satisfied if

T2 4 4T oty + 612

—}—n ac T
4 Pag Lo gh+ npoc 2

KL (17)
At large specimen dimensgion {p ~ 1 m), irrespective
of the radius of the tube in which it is placed, this con-.
dition gives 8%/4 + 82+ 1.58 << 1, where 8 = Ty/t,
and if the tube is at room temperature (t; = 300° K) the
deviation from linearity will be 10% even at T, up to

0°. When the external temperature is lower, the de-
viation is even greater.

Let us take the typical specimen radius as p= 1 cm.
Let @ = 0.5, corresponding to the properties of many
metals, and let ty = 300° K. Then in a hydrogen atmo-
sphere (A = 1.8+107%) and a nitrogen atmosphere (A =
= 2,56° 10'4), we obtain a deviation of 10% from the
linear law at g =3, By, = 0.82, TH, = 250°; BN, = 0.22,
TN = 66°and at g =1 (sufficiently large reaction vol-
ume and fine thermocouple) By, = 0. 4, Ty, = 120%

BN, = 0.11, Ty, = 33° (see also the figure).

Hence, it is clear that, in investigating recombina-
tion and employing the usual method of analyzing the
experimental results, the heating of the specimen due
to the reaction should not be allowed to exceed 100~
200° in a hydrogen atmosphere or 30—60° in an atmo~
sphere of nitrogen, oxygen or air. Certain results
obtained in [1, 6] evidently include a significant error.

NOTATION

Q is the total heat flow entering the specimen,
J/sec; ty is the temperature of the reactor walls, °K;
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Ty is the amount by which the specimen temperature
exceeds ty, deg; R is the tube radius, cm; p is the
specimen radius, cm; ryis the radius of the cylindri-
cal thermocouple model, cm; d is the specimen thick-
ness, cm; x is the longitudinal coordinate (0 at the
location of specimen); r is the radial coordinate; A =
=1y/p; 1= p/R; A is the thermal conductivity of the
medium filling the tube, J/cm-sec-deg; A is the ther-
mal conductivity of the thermocouple material, J/cm -
+ sec-deg; A¥ is the thermal conductivity of the speci-
men material, J/em - sec-deg; t(x,r) is the tempera-
ture field in the reaction volume; « is the radiation
factor of the specimen material; o = 5.67-107° erg/
m?- sec” deg! is the universal Stefan constant; J (z),
K, (2z), Ty(z) is the conventional notation for ordinary
and modified cylindrical functions of order n; y =
= 1,78107 is the Euler constant; G = 0.91597 is the
Catalan constant.
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